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Abstract
We study the synchronization behavior of a class of identical FitzHugh-Nagumo-type oscillators under adaptive cou-
pling. We describe the oscillators by a circuit model and we provide a sufficient synchronization condition that relies on 
the shape of the nonlinear conductance’s (i, u)-curve and the connectivity of the adaptive coupling network. The cou-
pling network is allowed to be time-variant, state-dependent and locally adaptive, where we treat memristive coupling 
elements as a special case. We provide a physical interpretation of synchronization in terms of power dissipation and 
investigate the sharpness of our condition.

Article Highlights

• The synchronization criterion applies to locally adaptive, state-dependent couplings including nonlinear resistors 
and memristors.

• The criterion has a physical interpretation in terms of minimization of dissipated power.
• The criterion is formulated in terms of electrical device parameters and coupling topology characteristics.

Keywords Synchronization · Oscillators · Memristors · Nonlinear circuits · Network dynamics

List of symbols
�n ∈ ℝ

n×n  Is the unit matrix
1n ∈ ℝ

n  Is the vector whose every entry is equal to 1
z�  State vector of subsystem �;
z�,1,… , z�,n�

  Its components n�dimension of subsystem �
N  The number of subsystems
x  and  y  Input and output vectors of dim. k except for Sect. 5.2, where they just denote generic vectors
�  Supply rate, a term which occurs in definitions 10, 11 and 12
S  Storage function, see Definition 10
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a��  Coupling strength of the gen. diffusive coupling in (2). Depends on time t, an edge variable c�� and z� , 
z�

k��  Describes the time evolution of c�� , see (2)
G  The coupling graph with N vertices V and NE edges E
N ∈ ℝ

N×NE  Incidence matrix of G to some arbitrary orientation
D ∈ ℝ

NE×NE  Diag. matrix carrying the edge weights of G
�  The Laplacian matrix to G , defined in (4)
z  The vectors z1 , … , zN Stacked by subsystem. x and y are defined the same way, see sec. 2.1
�1  and  �2  Stacked vectors of the first, resp. second, component of the z� , see (15) and (20)
S  Denotes the synchronization manifold, see def. 1
W ∈ ℝ

N×N  Conductance matrix from the electrical model in 2.3;related to Wd ∈ ℝ
NE×NE , the matrix carrying the 

edge conductances via (14) and to � via (16a)
uC  and  iL  Variables of the FHNO-circuit model
j, C, L, R  Scalar constants of the model
iG ∶ ℝ → ℝ  Nonlinear conductance function
z1 , z2  Variables in the unitless model
� = �0t  Normal time used in the unitless model
� , � , � , �  Scalar constants of the unitless model
fG ∶ ℝ → ℝ  Unitless conductance function.
fG  Vectorized version of fG , see (16)
��{A}  �-th eigenvalue of A in ascending order
� = ��  Parameter matrix in unitless model (16)
K   Constant associated to fG and relevant in thm. 3
1
⟂

N
⊂ ℝ

N  Space of vectors orthogonal to 1N

P  or  PN  Orthogonal projection to 1⟂

N

� ∈ ℝ
2N×2N  Relates the stacked vector z to �1 and �2.

V  Lyapunov function, bilinear form w.r.t. M , see (21)
Kl  Constant associated to fG in (22)
ẑ , �̂1 , �̂2  Nonsynchronous parts of the respective vectors
�1,s , �2,s  Synchronous part of �1 , �2

1 Introduction

Networks of coupled oscillators receive large amounts of interest across various disciplines, due to their relevance to for 
instance neural networks [6] and power systems [21]. In the context of neuromorphic computing, synchronization plays 
a key role in designing novel and power-efficient technologies. Understanding synchronization in oscillator networks 
has, for example, aided in designing these systems in a way that lets them naturally solve optimization problems [2, 
10, 13, 41] or tasks like image recognition [1] and gait pattern classification [38]. Hardware implementations of neural 
networks are of great interest [30] due to their power eficiency. The combination of neural networks with memristors 
[11, 12] exhibits remarkable properties such as fault tolerance [30] and event-triggered synchronization [34]. The design 
of such networks is an active area of research [22, 35, 57]. It is hence desirable to understand synchronization on a level 
relatively close to the hardware, for instance in terms of electrical parameters [43]. Necessary synchronization conditions 
have been approached for systems of linearly coupled oscillators via the Master stability function method [44], while 
other approaches leading to sufficient conditions are for instance based on contraction theory [3–5, 9, 27, 28, 36, 40], 
QUAD-conditions [15, 17, 18] or semi-passivity [46, 47, 49]. The approaches based on semi-passivity usually construct 
suitable (quadratic but also non-smooth) Lyapunov functions [14, 20, 56]. Most of these conditions do not allow an 
immediate physical interpretation and are sometimes hard to apply to actual physical systems. In one way or another, all 
these methods compare a one-sided Lipschitz condition to a suitable measure of algebraic connectivity of the coupling 
graph. We will discuss this in more detail in Sect. 5.2.
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The FitzHugh-Nagumo oscillator (FHNO) is a relevant oscillator for neuromorphic applications [42] because it is 
technically realizable [45] and shows biologically plausible behavior [39]. Its key ingredient is the nonlinear conduct-
ance, which we view as being characterized by its (i, u)-curve in this paper. We derive a sufficient synchronization 
criterion for identical diffusively coupled FHNOs that is phrased in terms of conditions on the coupling network and 
the (general) (i, u)-curve such that our condition also applies to other models such as the van-der-Pol oscillator [25, 
48]. We consider diffusive coupling with time-varying, state-dependent and locally adaptive coupling strength, where 
our main application consists of FHNOs coupled by ideal memristors.

In the setting of phase-oscillators, the setting of adaptive coupling is already well-studied, but still an active area 
of research. In order to not rely on the validity of a phase-approximation, we study the full oscillator dynamics and 
therefore only name a few references concerning synchronization of phase-oscillators [23, 29, 54].

Similar to [14] we use an approach based on semi-passivity but we choose a quadratic Lyapunov function. The 
major novelty of our approach consists of the generality of the coupling strength’s time evolution, but also in the 
way we bound its time derivative, which is reminiscent of the strategy in [17] but without the need for the individual 
oscillators’ vector fields to be Lipschitz or to satisfy a QUAD-condition. We exploit that the nonlinear conductance 
is semi-passive in the following sense: The dissipated power at the conductance is always positive for large enough 
magnitudes of applied voltage and negative differential conductance occurs only for voltages with magnitude 
smaller than some possibly large threshold. Our sufficient criterion essentially states that for all times the algebraic 
connectivity of the coupling network needs to be larger than the slope of this linear term for the oscillators to 
synchronize. The Lyapunov-function used includes the power dissipated by the coupling network as a term, so that 
this power tends to zero if our sufficient condition is met. Specialized to the standard unitless FitzHugh-Nagumo-
model (FHN-model) and static diffusive coupling, it turns out that our criterion is sharper than that of [14] based on 
semi-passivity and also that of [31] which uses a direct Lyapunov approach. For static diffusive coupling our criterion 
coincides with [3, cor. 4.1] and [27, thm. 30], whose derivation is based on contraction theory and [56],which is based 
on Lyapunov’s method. We note that most of these sources obtain their result as a special case of more general 
considerations and we will discuss in Sect. 5.2 the reason why our bound coincides with that of [3, 27], and [56].

An advantage of our criterion is that it spells out in terms of the ideal circuit’s parameters, which makes it easily 
applicable to electronical models of the FHNO such as the ones presented in [45]. Its application only requires 
knowledge of the nonlinear conductance’s (i, u)-curve and the coupling network.

In summary, we shed some light on a physically-interpretable sufficient synchronization condition of identical 
diffusively coupled FHNOs that is more specialized w.r.t. the oscillators but as sharp as the condition in [3] and has 
three distinct advantages: 

1. It gives practitioners an easy way of ensuring the occurrence of synchronization in dependence on the system’s 
nonlinearity.

2. It has a physical interpretation that is also embedded into the associated mathematical analysis, namely the 
minimization of dissipated power.

3. It also applies to locally adaptive, state-dependent couplings including memristors or nonlinear couplings

The paper is structured as follows. In Sect. 2 we first fix our notation and describe the class of considered couplings. 
Afterwards we recapitulate the FitzHugh-Nagumo oscillator and describe a generalization of it, discuss the 
electrical coupling, and derive a compact unitless description. In Sect. 3, we derive an explicit sufficient condition 
for synchronization. As an application, we spell out this condition for FHNOs coupled by ideal memristors and static 
linear conductances in Sect. 4. We demonstrate its correctness on an example in Sect. 5, where we also discuss 
how our result for static diffusive coupling is related to the existing literature. Finally, Sect. 6 summarizes the main 
contributions of this work and gives an outlook on further research in this area. All proofs to lemmas and propositions 
stated in the main text can be found in the appendix.

Notation: Throughout, vector and matrix objects are typeset with bold symbols. For instance, we denote by � the 
zero-vector of a given vector space. Given the amount of necessary notation, we included a nomenclature.

This work is a completely revised and substantially extended version of the earlier preprint "On the Electrical 
Modeling and Synchronization of Diffusively Coupled FitzHugh-Nagumo Oscillators", available at https:// doi. org/ 
10. 36227/ techr xiv. 21679 532. v1.

https://doi.org/10.36227/techrxiv.21679532.v1
https://doi.org/10.36227/techrxiv.21679532.v1
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2  Diffusively coupled oscillators of FitzHugh‑Nagumo type

2.1  Interconnected input‑affine systems

Consider the input-affine dynamical system

with (Lipschitz) continuous functions f ∶ ℝ
n
→ ℝ

n , B ∶ ℝ
n
→ ℝ

n×k , h ∶ ℝ
n
→ ℝ

k . We refer to the objects as the state 
vector z ∈ ℝ

n , input vector x ∈ ℝ
k , and output vector y ∈ ℝ

k , where we have dropped the time argument for the sake 
of brevity. The input vector x is assumed to be a continuous and bounded function of time.

We obtain an isolated system by considering N systems of type (1) interconnected by a generalized diffusive1 coupling: 

 with state-variables z� , inputs x� and outputs y� for � = 1,… ,N , where z =
[
zT
1
,… , zT

N

]T
 denotes the stacked state 

vectors. The coupling weights a�� = a�� ≥ 0 are nonnegative and symmetric for all arguments. The dependence of the 
coupling a�� on the state vector’s of all subsystems is a very general case and for most applications dependence on z� , z� 
suffices as most coupling mechanisms are local in nature. Since our synchronization condition’s proof also works for the 
more general case, we decided to work in this setting. We assume that the outputs and inputs are of the same dimension 
k so that the difference y� − y� makes sense. The coupling weights are allowed to be functions of time t as well as the 
systems’ state variables and can furthermore be locally adaptive in the sense that a�� depends on a state variable c�� 
that evolves over time. We call this a locally adaptive coupling because the evolution law of a�� depends only on time, 
c�� and the outputs y� and y�.

We describe the coupled subsystems in terms of a weighted undirected graph G = (V, E) with |V| = N nodes V , one for 
each subsystem, and NE = |E| edges of respective weights a�� depending on the variables t, z and c�� . For each unoriented 
edge {�, �} select an orientation, denoted by (�, �) if the edge is oriented from � to � or (�,�) otherwise. Let N ∈ ℤ

N×NE 
be the incidence matrix of the resulting directed graph G with the elements

We collect the edge weights in the diagonal matrix D ∈ ℝ
NE×NE , i.e., for the edge e = {�, �} one has Dee = a�� . We define 

the Laplacian matrix as

It is a standard fact of algebraic graph theory [8] that �  can alternatively be defined as

(1)ż = f (z) + B(z)x , y = h(z), z(t0) = z0,

(2a)ż𝜇 = f (z𝜇) + B(z𝜇)x𝜇 ,

(2b)y� = h(z�),

(2c)x� = −

N∑
�=1

a��(t, z, c��)
[
y� − y�

]
,

(2d)ċ𝜇𝜈 = k𝜇𝜈
(
y𝜇 , y𝜈 , t, c𝜇𝜈

)
,

(3)n�e =

⎧⎪⎨⎪⎩

+1 if e = (�, �) for some � ∈ V

−1 if e = (�,�) for some � ∈ V

0 otherwise.

.

(4)� = NDN
T
.

(5)Γ�� =
∑
�≠�

a�� and Γ�� = −a�� , for � ≠ �,

1 We call this coupling generalized diffusive because the input is proportional to the difference of the outputs, although the coupling 
strength is adaptive and allowed to depend on the subsystems’ state.
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which coincides with (4). Throughout this paper we sort the eigenvalues of � in ascending order, i.e.,

where the first inequality is strict if and only if the coupling graph is connected. Note that the eigenvalues of � are always 
real because �T = � and nonnegative because � is diagonally dominant by (5). For later use, we define the two (stacked) 
input and output vectors

respectively, which are related according to (2c) by

where �k denotes the unit matrix of dimension k. Note that L is positive semi-definite because � is. The �-th input x� is 
then obtained as

with e� being the �-th unit vector in ℝN and 1k ∈ ℝ
k the vector of ones.

Assume that the N subsystems in (2) are identical and therefore of the same dimension n for all � = 1,… ,N . If the 
initial values of the subsystems are also identical, then the solution to the coupled system (2) is that the state vectors z� 
of the subsystems are equal to each other at all times, i.e., z�(t) = z�(t) and such that z�(t) is a solution to the subsystem 
(1) with zero-input and an appropriate initial value. We call such solutions synchronous.

Definition 1 (Synchronization manifold) The (partial) synchronization manifold to the system (2) with identical subsystems 
of dimension n is defined as

Synchronous solutions are automatically contained in the synchronization manifold. This definition of synchrony does 
not include clustered synchronization or phase-locked solutions with phase differences other than 0. We call this a partial 
synchronization manifold, because only the state variables z synchronize whereas the couplings’ state variables c may not.

2.2  FitzHugh‑Nagumo oscillator

The FitzHugh-Nagumo oscillator (FHNO) is a technically realizable [45] and biologically plausible neuronal oscillator [39]. 
In this section, we briefly recapitulate the electrical model depicted in Fig. 1 which will be used to describe the FHNO 
throughout this paper. We will show that this model satisfies the definition of a strictly semi-passive system as we need 
this property to apply prop. 13 later. The differential equations associated with the circuit can be deduced from Kirch-
hoff’s laws and the constitutive relations of the circuit elements: 

(6)0 = �1{�} ≤ �2{�} ≤ ⋯ ≤ �n{�},

x =
[
xT
1
,… , xT

N

]T
and y =

[
yT
1
,… , yT

N

]T
,

(7)x = −Ly with L = �⊗ �k ,

x𝜇 = −eT
𝜇
Ly, where e𝜇 = e𝜇 ⊗ 1k ,

S∶=
{
z ∈ ℝ

nN | z� = z� , ∀ �, � = 1,… ,N
}
.

Fig. 1  Equivalent circuit of a 
FitzHugh-Nagumo oscillator
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 Here, uC and iL are state-space quantities corresponding to a capacitor voltage and an inductor current, respectively, 
while uC ,0 and iL,0 denote their initial values at the starting time t0 , respectively. The current i denotes an external excitation 
current, while the current j represents a (bias) supply current. The electrical parameters C, L, R denote a capacitance, an 
inductance, and a resistance, respectively. Lastly, iG ∶ ℝ ↦ ℝ is a nonlinear conductance function, which has been realized 
by a tunnel diode in the past [25, 39]. In the following, we work with the cubic nonlinearity

where the conductance G0 and voltage U0 are normalization constants. Even though we will stick to the above nonlinear 
conductance function in our examples, our results hold for more general functions. We will refer to this more general 
case as an oscillator of FitzHugh-Nagumo-type.

The FHNO can be written as a system of type (1), i.e., an input affine system with one-dimensional input given by the 
current i and one-dimensional output given by the voltage uC . We introduce the following quantities in order to recast 
(8) in terms of unitless variables: 

where G0 , U0 are the parameters of (9) which transforms to

 In terms of the unitless parameters of (10) and in dependence on � , (8) can be written as 

 where we denote z� = d

d�
z.

Lemma 2 The system (11) is strictly semi-passive2 and admits a radially unbounded storage function for all functions 
fG ∶ ℝ ↦ ℝ satisfying

(8a)Cu̇C = iC = j − iG(uC) − iL + i, uC(t0) = uC ,0,

(8b)Li̇L = uL = uC − RiL, iL(t0) = iL,0.

(9)iG(uC) = G0

[
u3
C

3U2
0

− uC

]
,

(10a)�0 =
1√
LC

, Z0 =

�
L

C
, I0 = G0U0,

(10b)z1 =
uC

Z0I0
, z2 =

iL

I0
, � = �0t,

(10c)� =
j

I0
, � =

R

Z0
, fG(z1) =

1

I0
iG
(
Z0I0z1

)
,

(10d)fG(z1) = �

[
�2

3
z3
1
− z1

]
, � = G0Z0.

(11a)z� = f (z) + B(z)x , z(�0) = z0, with

(11b)z =
[
z1 z2

]T
, x = [i∕I0], y = [z1], and

(11c)f (z) =

[
−fG

(
z1
)
− z2 + �

z1 − �z2

]
, B(z) =

[
1

0

]
,

2 For details concerning semi-passive systems we refer to appendix A.1.
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and all � ∈ ℝ . Here, the function � from definition 12 can be chosen as

The physical meaning behind lemma 2 is that the system (8) is semi-passive as long as the nonlinear conductance’s 
behavior is eventually passive in the following sense: For voltages with magnitude larger than some finite threshold the 
conductance always dissipates power; power injection can only occur for voltage magnitudes below that threshold. The 
characterization of the FHNO as a semi-passive system provided by lemma 2 allows us to apply prop. 13 to networks of such 
oscillators coupled by a generalized diffusive coupling mechanism as in (2).

2.3  Coupled FHN‑oscillators

Now that we have characterized the FHNOs as strictly semi-passive systems, we discuss the generalized diffusive coupling 
network used to connect the oscillators, where we use the graph-theoretical language developed in Sect. 2.1. Every pair 
of adjacent oscillators is coupled by an adaptive coupling as depicted in Fig. 2. Hence, to every undirected edge {�, �} ∈ E 
there is a (positive) conductance W�� which we allow to depend on time t, the voltage v�� across the edge {�, �} and an edge 
variable c�� . We also associate a locally Lipschitz-continuous function k�� ∶ ℝ ×ℝ ×ℝ → ℝ to each edge that describes the 
time-evolution of c��:

We call such a time evolution for W�� locally adaptive because it is driven by local information, namely the edge voltage 
v�� and the edge variable c��.

We denote by u = [u1, u2,… , uN]
T and i = [i1, i2,… , iN]

T the port quantities of the interaction ports and introduce the 
vectors v ∈ ℝ

NE , j ∈ ℝ
NE and c ∈ ℝ

NE containing the voltage differences v�� , the interaction currents j�� , and edge variables 
c�� respectively . Using the graph’s incidence matrix N ∈ ℤ

N×NE the Kirchhoff equations governing the coupling network 
spell out as follows: 

Collecting the edge weights in a diagonal matrix denoted by Wd ∈ ℝ
NE×NE we can simultaneously state Ohm’s law for 

every coupling conductance as:

 Combination of (13b) with (13a) yields the specialized version of (7):

lim
z1→±∞

fG
(
z1
)
= ±∞,

𝜌(‖z‖) = c0‖z‖ for c0 > 0.

(12)ċ𝜇𝜈 = k𝜇𝜈
(
t, v𝜇𝜈 , c𝜇𝜈

)
.

(13a)i = −Nj, v = NTu.

(13b)j = Wdv , withWd = Wd(t, v , c).

(14)i = −Wu, with W = W(t, v , c) = NWdN
T.

Fig. 2  Schematic representa-
tion of an example network 
consisting of three coupled 
FHNOs N1,… ,N3 with the 
output voltages u� and input 
currents i� . A memristor 
symbol is used to indicate 
the adaptive coupling in 
(14). At every coupling we 
have the interaction current 
j�� = W��(t, v�� , c��)v�� . The 
ODEs governing this example 
are (17) with the choice of W  
as depicted above

N1

i1

u1 v12 N2

i2

u2v
13

N3

i3

u3

v 2
3

W12 j12

W
13 W

23
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The current directions are chosen such that a negative sign emerges in the coupling formula (14). Note that the 
conductance needs not be linear despite the appearance of (14). The dependence of W  on the voltage differences v 
allows for nonlinear conductances where the shape of (14) only guarantees that a zero voltage difference results in a 
zero current.

In order to state the coupled version of (11) we define the vectors of normalized capacitor voltages and normalized 
inductor currents and normalized supply currents

as well as a parameter matrix � ∈ ℝ
N×N and the unitless analog to W  : 

with t = �−1
0
� , v = Z0I0N

T�1 , where � is from (10) and � denotes the unit matrix. Furthermore, we define vector-valued 
functions

 where the �-th element of fG is fG evaluated at z�,1 , while the ��-th element of k̃ is �−1
0
k�� evaluated at t = �−1

0
� , 

v�� = Z0I0[z�,1 − z�,1] , and c�� for {�, �} ranging over the edges E of the coupling graph G . Using these definitions, we 
obtain the ODE describing the coupled FHN-type oscillators w.r.t. a generalized diffusive coupling parametrized by 
normal time � : 

 This is an instance of an ODE of type (2) in unitless form. The example network sketched in Fig. 2 has three oscillators 
so that �1, �2 ∈ ℝ

3 and three adaptive couplings W12,W13,W23 that are functions of � , �1 and c . Its coupling matrix � is

3  Main result

We first state a sufficient condition for the synchronization of N FHNOs described in (11) with a coupling as in (17). 
We will prove this result throughout the rest of this section. In accordance with def. 1, we say that the states z1,… , zN 
of N oscillators synchronize if limt→∞

‖‖‖z� − z�
‖‖‖ = 0 for all �, � = 1,… ,N , which excludes clustered synchronization.

Theorem 3 Consider N identical, diffusively coupled FitzHugh-Nagumo-type oscillators (17). Let G denote the weighted undi-
rected graph with time-variant and locally adaptive weights associated to the coupling network and let �(� , z, c) denote the 
associated Laplacian matrix of G . The states z1,… , zN of the oscillators synchronize if the following conditions hold: 

1. the coupling graph G is connected,
2. the normalized nonlinear conductance function fG ∶ ℝ → ℝ satisfies limz1→±∞ fG

(
z1
)
= ±∞ and − dfG

dz1
 admits a global 

maximum K∶ = maxz1∈ℝ

{
−

dfG

dz1

}
;

(15)�1 =
[
z�,1

]N
�=1

, �2 =
[
z�,2

]N
�=1

, � ∈ ℝ
N ,

(16a)� = ��, �(� , z, c) = Z0W(t, v , c),

(16b)fG ∶ ℝ
N
→ ℝ

N , and k̃ ∶ ℝ ×ℝ
N ×ℝ

NE
→ ℝ

NE ,

(17a)� �
1
= � − fG

(
�1
)
− �2 − ��1

(17b)� �
2
= �1 − ��2

(17c)c� = k̃
(
𝜏 , �1, c

)
.

(18)� = Z0

⎡⎢⎢⎣

W12 +W13 −W12 −W13

−W12 W12 +W23 −W23

−W13 −W23 W13 +W23

⎤⎥⎥⎦
.
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3. the algebraic connectivity �2{�(� , z, c)} , i.e., the smallest nonzero eigenvalue of �(� , z, c) , satisfies 

4. The coupling’s evolution law k̃ in (17c) is such that a solution to (17c) exist for all � ≥ �0 regardless of the inputs x.

The initial conditions of the system do not matter in the above theorem. As a consequence the synchronization 
manifold is globally asymptotically stable and the individual oscillators all converge to the same state.

3.1  Preparations

We begin with providing a candidate for a (weak) quadratic Lyapunov function, to which we show that it is decreasing 
along the solutions of (17) under some assumptions on the coupling graph and the nonlinearity fG . Its decrease along the 
solutions of (17) will be key to deduce synchronization, because its 0-locus coincides with the synchronization manifold. 
To this end we denote by 1⟂

N
 the subspace of vectors perpendicular to 1N , and introduce the orthogonal projection matrix

to 1⟂

N
 . One has P1N = � and Pv = v for all v ∈ 1

⟂

N
 . Recall that the stacked state vectors are denoted by z =

[
zT
1
… zT

N

]T
 

and that z ∈ ℝ
2N given that each oscillator has a two-dimensional state variable z� . The following computations will 

be easier if one works with the stacked normalized voltages and currents �1 and �2 defined in (15) instead. The two are 
related by a permutation matrix denoted by

Lemma 4 Let the graph G describing the coupling network be connected and assume that the normalized supply currents � 
are identical, i.e., � = �1 in (2), where 1 denotes the vector of ones. Define V ∶ ℝ

2N
→ ℝ as

Then V (z) = 0 if and only if �1 = z̄11 and �2 = z̄21 for z̄1, z̄2 ∈ ℝ , i.e., V (z) = 0 ⇔ z ∈ S , where S is the synchronization manifold 
to (17) as in definition 1.

Suppose there exists a monotonically increasing function fm ∶ ℝ → ℝ and a constant Kl ≥ 0 such that,

In this case, if �2{�(� , z, c)} ≥ Kl for all (� , z, c) then V �(z) ≤ 0 along the solutions of (17) , where �2{�} refers to the second-
smallest eigenvalue of �.

The condition (22) on the normalized conductance function requires some clarification concerning when it holds. 
This is the goal of the next lemma.

Lemma 5 Let fG ∶ ℝ → ℝ be a (at least once) differentiable function such that

Furthermore, let its derivative with respect to z1 be a function that is bounded from below and set

𝜆2{�(𝜏 , z, c)} >max{0, K} ∀ (𝜏 , z, c);

(19)P = �N −
1

N
1N1

T
N

(20)� ∈ ℝ
2N×2N ∶ �z =

[
�
1

�
2

]
.

(21)V (z) =
1

2
zTMz, with M = �

T

[
P 0

0 P

]
�.

(22)fG(z1) = fm(z1) − Klz1 for all z1 ∈ ℝ.

lim
z1→±∞

fG(z1) = ±∞.

K∶=max
z1∈ℝ

{
−

d

dz1
fG(z1)

}
.
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Then fG satisfies the conditions of lemma 4 with Kl = K + � for 𝜖 > 0 arbitrarily small, and is such that (11) is semi-passive with 
unbounded storage function.

3.2  Proof of Theorem 3

Now, we will exploit the above results in order to show that the synchronization manifold is globally asymptotically stable 
under the conditions of theorem 3.

The strategy is as follows: We show that the bound on V ′ obtained in lemma 4 can be spelled out in terms of a vector 
ẑ , defined below in (23), that is perpendicular to the kernel of M from (21). We then show that z ∈ S if and only if ẑ = 0 . 
We spell out the bound on V ′ in terms of the norm of ẑ which we use to bound its integral. Afterwards we use a variation 
of Barbalat’s lemma (provided in the appendix, see lemmas 15 and 16) to conclude

which implies that z ∈ S . In order to apply Barbalat’s lemma we must show that the solutions are uniformly continuous 
and it is there where we will use semi-passivity of the coupled system.

Under the conditions of theorem 3, the conditions of lemma 4 are satisfied according to lemma 5. We had seen that 
then

Lemma 4 characterizes the synchronization manifold as the linear subspace consisting of those z ∈ ℝ
2N for which �1 = z̄11 

and �2 = z̄21 . In terms of P and the permutation matrix � from (20) one has that

Since S is a linear subspace of ℝ2N it is always possible to split up the state vector z into a part zs in S and a part ẑ 
orthogonal to it. By the above this split is facilitated by constant projections: 

 In terms of �1 and �2 this looks a bit simpler: 

where

 are the averages of the state variables taken over the ensemble of N oscillators. One has that z ∈ S if and only if ẑ = 0 
which is equivalent to �̂1 = �̂2 = 0.

As � is the (symmetric) Laplacian matrix to a connected graph its only eigenvector with eigenvalue 0 is 1N . Even though 
� may vary over (normal) time, its kernel does not change but is always spanned by 1N . Hence, �1,s(�) and �2,s(�) defined 

lim
t→∞

ẑ(t) = �,

V �(z) ≤ −�T
1

[
P� − KlP

]
�1 − ��T

2
P�2.

S = ker

{[
P 0

0 P

]
�

}
.

(23a)zs(�) = �
−1

[
P − � 0

0 P − �

]
�z(�),

(23b)ẑ(𝜏) = �
−1

[
P 0

0 P

]
�z(𝜏).

(24a)

[
�1,s(𝜏)

�2,s(𝜏)

]
=

[
P − � 0

0 P − �

][
�1(𝜏)

�2(𝜏)

]
=

[
z̄1(𝜏)1N

z̄2(𝜏)1N

]
,

(24b)

[
�̂1(𝜏)

�̂2(𝜏)

]
=

[
P 0

0 P

] [
�1(𝜏)

�2(𝜏)

]
,

(24c)z̄1(𝜏) =
1

N

N∑
𝜇=1

z𝜇,1(𝜏) and z̄2(𝜏) =
1

N

N∑
𝜇=1

z𝜇,2(𝜏)
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above are always contained in the kernel of � . Furthermore, zs and ẑ are given by linear combinations of the entries of 
z with constant coefficients as can be seen from (23). We can now express the bound on V ′ via ẑ and exploit that ẑ can 
be decomposed as a function of the eigenvectors of � excluding the eigenvector corresponding to the eigenvalue zero. 
Here, we have that

Hence, by our theorem’s assumption

there exists a constant c0 > 0 such that,

and from this, we obtain via integration that

As V ≥ 0 , the integral is bounded from above by c−1
0
V (z0) and from below by 0 for all � ∈ ℝ.

According to prop. 13 the solutions of the diffusively coupled system (17) are bounded and as its right hand side is 
continuous we conclude that z′ is bounded. This implies that z is uniformly continuous (u.c.) and as a consequence, 
‖ẑ‖ ∶ ℝ → ℝ , 𝜏 ↦ ‖ẑ(𝜏)‖ is u.c. because ẑ = Pz and linear maps are u.c. It now follows from lemma 16 that

We conclude that S is globally asymptotically stable and therefore proved theorem 3.

4  Application to resistive and memristive coupling

We would like to consider some applications of theorem 3. We consider ideal voltage-controlled memristors as described 
in [50] as coupling elements, containing a simplification to purely resistive coupling as a special case. As we consider 
explicit circuit elements we will spell out the conditions of theorem 3 in terms of the circuit elements’ parameters. The 
ideal memristors we consider are governed by the following ODE in input-state-output form, where the variables below 
are parametrized w.r.t. time t and carry units with the exception of the memristor’s state c : 

 Here, W(c) is the memductance with lower bound W0 and upper bound W1 as the state variable c is restricted to the 
interval [0, 1]. In the above description, the input u is the voltage across the device, while the current i is both the output 
as well as the quantity driving the evolution of the memristor’s state. Concerning simulations of this particular model 
we refer to the literature (cp. for instance [50]). We consider the case where each edge {�, �} ∈ E of the coupling graph 
G is realized by a memristor of the above type and such that the constants Q0 , W0 and W1 may depend on the edge {�, �} , 
indicated by replacing W with W�� and Q0 with Q��,0 , etc., which we also collect in a diagonal matrix Qd ∈ ℝ

NE×NE . Solutions 
to (26) exist for all times regardless of the input u as the memristor’s state variable is restricted3 to the interval [0, 1]. We 
collect the memductances W��(c��) in a diagonal matrix Wd(c) ∈ ℝ

NE×NE and define the coupling matrix as in (14) to be

V �(z) ≤ −�T
1

[
P� − KlP

]
�1 − 𝛽�T

2
P�2

≤ −
[
𝜆2{�} − Kl

]‖‖‖�̂1
‖‖‖
2
− 𝛽

‖‖‖�̂2
‖‖‖
2
.

𝜆2{�(𝜏 , z, c)} > Kl, Kl = max{0, K}, ∀ (𝜏 , z, c),

V �(z) ≤ −c0‖ẑ‖2,

(25)V (z(𝜏)) − V (z0) ≤ −c0 �
𝜏

0

‖ẑ(s)‖2ds.

lim
𝜏→∞

‖ẑ(𝜏)‖ → 0 ⇒ lim
𝜏→∞

z(𝜏) ∈ S.

(26a)ċ = Q−1
0

i, i = W(c)u, c ∈ [0, 1],

(26b)W(c) = W0 + c
[
W1 −W0

]
.

3 It is possible to realize an equivalent system with c ∈ ℝ , where one augments the r.h.s. of (26) by �-functions; then solutions to initial val-
ues c

0
∈ [0, 1] exist for all times. Hence, one could model a system with restricted state variable with unrestricted state variables as well.
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We would like to provide the full set of ODEs for identical FHNOs coupled by ideal memristors of type (26) in circuit 
quantities instead of the normalized ones used in (17). We denote by uC ∈ ℝ

N the vector of capacitor voltages, iL ∈ ℝ
N 

the vector of inductor currents, j = 1N the vector of supply currents, and R0 = R�N , C = C�N , L = L�N diagonal matrices 
carrying the resistances, capacitances and inductances respectively that occur in the FHNO circuit model. The ODE 
corresponding to (17) is then given by (cp. (11) and (10) concerning the translation between the two models) 

 with W(c) as in (26) and (27) and where iG denotes the vectorized form of iG analogous to fG and fG.
In order to apply theorem 3 one needs to find a lower bound to �2{W(c(t))} for all t ≥ t0 . One certainly has

Since the eigenvalues of Laplacian matrices are monotonic functions of the edge-weights [8], this minimum can be 
computed by setting each edge weight equal to the minimal memductance W��,0 which is assumed at c�� = 0 . Thus,

We arrive at the following corollary to theorem 3:

Corollary 6 Consider the N identical FHNOs coupled diffusively by ideal memristors in (28). Let G denote the weighted undirected 
graph with locally adaptive weights associated to the coupling network and let W(c) denote the associated Laplacian matrix 
of G described in (27). The states of the oscillators synchronize if the following conditions hold: 

1. the coupling graph G is connected,
2. the nonlinear conductance function iG ∶ ℝ → ℝ from (8) satisfies limu→±∞ iG(u) = ±∞ and − diG

du
 admits a global maximum 

ΔG∶=maxu∈ℝ

{
−

diG

du
(u)

}
,

3. the lower bound �2,min = �2{W(�)} for the algebraic connectivity �2{W(c(t))} , i.e. the smallest nonzero eigenvalue of 
W(c(t)) , satisfies 

For the special case of static coupling described by a constant conductance matrix W  , one replaces �2,min with the 
algebraic connectivity �2{W}.

The quantity ΔG in the above corollary can be interpreted as the maximal negative differential conductance in the 
FHNO’s circuit realization. It is striking that the only parameters in the above sufficient synchronization condition are 
ΔG and the minimal possible connectivity �2,min while the other parameters of the FHNO play no role at all. In particular 
the initial values of the oscillators and the memristors do not matter. This is not in contradiction to the behavior that 
memristively coupled oscillators are known to exhibit from experiments, because our criterion is only met if the 
memristors’ high-Ohmic states and the network topology are still conductive enough to allow for synchronization. 
Hence, synchronization patterns that depend on the initial values can only occur if condition (iii) of Corollary 6 is not 
satisfied, under the assumption that the others are.

We note that for most applications, indiscriminate synchronization of neural oscillators with memristive coupling is 
undesirable. In this case the memristors need to be chosen such that the minimal possible connectivity �2,min does not 
exceed ΔG . Then, condition (iii) is violated and one can hope to observe the interesting phenomena that memristive net-
works are known for, so that Corollary 6 should be interpreted as a No-Go-theorem that tells us what kind of memristors, 

(27)W = W(c) = NWd(c)N
T .

(28a)Cu̇C = j − iG(uC) − iL −W(c)uC ,

(28b)Li̇L = uC − R0iL,

(28c)ċ = Q−1
d
Wd(c)N

TuC ,

(29)�2{W(c(t))} ≥ �2,min∶= min
c∈[0,1]NE

{�2{W(c)}}.

(30)�2,min = �2{W(�)} .

𝜆2,min >max{0,ΔG}.
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whose parameters enter �2,min , fit to the chosen FHNOs, whose relevant parameter is ΔG . In view of the simulation results 
below one should in fact choose the memristors such that �2,min is orders of magnitude smaller than ΔG.

For synchronized states no current flows through the coupling network and therefore synchronization coincides with 
minimization of power dissipated by the coupling network. The projection P used in the Lyapunov function (21) is in fact 
the Laplacian matrix to the unweighted complete graph. For static coupling, one can define an alternative Lyapunov 
function to (28) where the electrical counterpart to � is replaced by the coupling matrix W  . Explicitly, one can show that 
the storage function

is a weak Lyapunov function to (28) leading to the same result as cor. 6 (for static coupling). The first term is in fact the 
power dissipated by the coupling network. This is another way to observe the implication "synchronization implies 
minimization of dissipated power in the coupling network" by having the Lyapunov function dominate the dissipated 
power.

If one chooses identical memristors, then �2,min = W0 �2(�0) , where �0 describes the unweighted Laplacian matrix 
to the network. The algebraic connectivity �2(�0) is bounded from above both by the vertex- as well as the edge-
connectivity [24], defined as the minimal number of vertices (together with the edges connected to them) or edges 
respectively that one has to remove to render the graph disconnected. This is again bounded from above by the minimal 
degree of the vertices, i.e., one finds the vertex with the least neighbors and uses this as a bound. Of course, this can 
be much too conservative as it is possible to construct graphs with edge-connectivity equal to 1 but such that every 
neighbor has at least N0 edges (just take two complete graphs on N0 vertices each and join them by a single edge); but 
nonetheless this gives an estimate if one is unwilling to compute �2(�0) directly.

5  Simulation results and discussion

5.1  Simulation results

In the first part of this section, we describe a practical guide towards the application of the derived synchronization 
condition. We use the ODE in terms of circuit parameters (28) and the criterion from cor. 6, once for memristive couplings 
and once for purely resistive couplings.

In order to compare the sharpness of our synchronization condition to the one of [3] and its predecessor [14] in 
Sect. 5.2, we simulate the same example as the latter, which is depicted in Fig. 3. Here, every vertex represents a FHNO 

(31)S
(
uC , iL

)
= uT

C
WuC + Z2

0
iT
L
WiL

Table 1  FitzHugh-Nagumo 
oscillator parameters

Circuit parameters

R = 4.7 kΩ j = 0 A G0
= 100 μS

C = 100 nF L = 23.5 H U0
= 0.24 V

W0
= 100.01 μS W1

= 500 μS Q0
= 1 μA∕s

Fig. 3  Graph abstraction of 
the emulated example. Each 
vertex represents a FitzHugh-
Nagumo oscillator. The edges 
represent the memristive 
interconnections depicted in 
Fig. 2 with identical coupling 
elements

1

2

3

4

56

7

8

9
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as depicted in Fig. 1, whereas every edge represents the memristive and resistive interconnections from Sect. 4, which 
are chosen to be identical. The circuit parameters used within our simulations are given in Table 1.

The nonlinear conductance function iG is the one given in (9) with U0 and G0 as in table 1.
In order to apply our synchronization condition, we must first calculate the negative derivative of iG , which is bounded 

from above and has the maximum ΔG = G0 = 100 μS , see Fig. 4. In a practical scenario, one must measure the (i, u)-curve 
of the nonlinear conductance, calculate the negative derivative numerically, and find its global maximum. According to 
cor. 6, the next step is to verify, whether for all times and memductance states, the connectivity of the graph is greater 
than ΔG.

The connectivity of the unweighted graph is given by

where �0 denotes the unweighted graph’s Laplacian and A0 is the unweighted adjacency matrix. For uniform static 
coupling of strength Gc , the weighted graph’s Laplacian is given by W = Gc�0 and so �2{W} = Gc in this case. For identical 
memductances as coupling elements with high-ohmic state W0 one has by (30) that

Hence, W  satisfies the inequality of corollary 6 if

We stress that it is not necessary to pick the coupling weights uniformly. Any coupling graph W  with 𝜆2{W(�)} > 100 μS 
works here.

We display in Fig. 5 the results of a simulation for 100 copies of the system with memristive coupling for the case of 
W0 = 100.01 μS just above the boundary of our condition. The memristors are initialized identically in the high-ohmic 
state to give the system the "slowest" start possible. The oscillators themselves are initialized randomly such that iL,0 = 0A 
and uC ,0 is distributed uniformly in [−400, 400]mV , where 400 mV is the maximal amplitude of the uncoupled FHNO’s 
stable limit cycle. The quantity plotted is

with emax chosen s.t. maxt e(t) = 1 . This serves as a measure for the synchronization error although it neglects the second 
state variable iL but has the advantage that it is also a measure for the power distributed by the coupling network. We 
observe that eventually all FHNOs synchronize but that the time required can vary. With the chosen parameters the period 
of a single oscillator is about 2ms so that synchronization occurs within at most 10 oscillation cycles for the chosen range 
of initial values. We also observe that the power dissipated by the coupling network is not monotonically decreasing but 
exhibits a damped oscillation in magnitude with a similar period as the FHNO.

We have also tested the distance between our sufficient synchronization condition from the (unknown) necessary 
one by running a series of simulations for different (uniform) static coupling conductances on the graph depicted in 
Fig. 3 with the parameters in Table 1. The results are displayed in Fig. 6, where the boundary of our condition Gc = 100 μS 
is placed at the very top of the scale. We observe that synchronization is (eventually) achieved for conductances three 
orders of magnitude smaller than the criterion requires. However, we also observe that the time at which synchronization 
is achieved increases drastically from a few oscillation cycles to more than 1000.

�2{�0} = 1, with �0 = ����(A01) − A0,

(32)�2,min = W(�) = W0�2
{
�0

}
= W0.

(33)Gc > ΔG = 100 μS, W0 > ΔG = 100 μS.

(34)e(t) =
1

emax

N∑
�=2

[
uC ,�(t) − uC ,1(t)

]2
,

Fig. 4  The nonlinear conduct-
ance function (9) and its nega-
tive derivative w.r.t. u 

−0.4 0 0.4
−20

−10

0

10

20

u in V

i G
(u
)
in

µ
A

−0.4 0 0.4
−0.2

−0.1

0

∆G

0.2

u in V

−
d d
u
i G

(u
)
in

m
S



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:198  | https://doi.org/10.1007/s42452-024-05791-8 Research

While we did not observe a large variance in synchronization speed in the memristive scenario, we did so in the static 
case for situations where the criterion was not met. We think that this suggests that the gap between sufficient and 
necessary conditions for synchronization needs additional exploration. We also think that our sufficient condition should 
be further refined and augmented by criteria that guarantee a certain synchronization speed, potentially in dependence 
of the initial values, as it may be unacceptable to have a required synchronization time of a factor more than a 1000 time 
larger than the system’s time scale defined by the FHNOs period.

5.2  Comparison with the literature

To the best of our knowledge there exists no sufficient synchronization condition for memristively coupled FHNOs beyond 
the situation of two memristively coupled oscillators [32] although the phenomenon has been studied numerically on 
numerous occasions for two or more oscillators not necessarily of FHN-type [26, 33, 37, 53]. While there exist sufficient 
conditions towards systems coupled by a time-variant coupling matrix [3, 27], the time-variance there is not allowed 
to be depend on the oscillators’ state or additional state variables which excludes both nonlinear coupling elements 
as well as locally adaptive ones. A few types of diffusive, locally adaptive coupling have been studied in [15, 16], where 
the coupling strength is only allowed to be increasing so that our general form of admissible coupling and its evolution 
law also adds to the existing literature. For purely static, linear coupling the picture is more complicated, which is why 
we discuss this topic to more extent below and summarize our discussion in table 2. Given the vast amount of literature 
on the topic we can of course only include a selection of publications. We begin with comparing the sharpness of our 
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e(
t)

1 2 3 4 5 6 7 8 9

20
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100

µ

−0.4

0

0.4

u
µ
,0

Fig. 5  Left: The plot shows the synchronization error (34) over time for 100 identical networks with different initializations. Right: 100 ran-
domly chosen initializations of the system with coupling topology as in Fig. 3, where � labels the oscillators

Fig. 6  The synchroniza-
tion error (34) over time for 
static coupling and a wide 
range of conductances. The 
y-axis starts at the boundary 
Gc = 100 μS of the sufficient 
condition. Synchronization 
is achieved for coupling 
conductances orders of mag-
nitude lower than required 
but with reduced and varying 
speed
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c
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S
0
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e(
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Table 2  A comparison of 
the different approaches to 
synchronization mentioned, 
which for the static case 
all compare the algebraic 
connectivity �

2
{L} to some 

other parameter that is set to 
1 in the column "main bound"

The parentheses and the asterisk in the last line indicate that the results of [17, 18] include only a small 
class of adaptive couplings and that although the main bound is determined by �

2{�} , the original 
exposition does not state this explicitly

Coupling type Time variance Clusters General 
oscillators

Main bound

Semi-passivity as in thm. 3 Diffusive, nonlinear passive Adaptive No No 1 < 𝜆2{�}

Direct Lyapunov approach General linear Static No Yes 1 < 𝜆2{�}

Contraction theory Diffusive, linear Time-variant Yes Yes 1 < 𝜆2{�}

QUAD-conditions Diffusive, linear (Adaptive) No Yes 1 < 𝜆2{�}
∗
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synchronization condition for static diffusive coupling to the one presented in [14] as this is also based on semi-passivity, 
albeit working with a non-smooth Lyapunov function.We also compare our criterion briefly to the more recent but 
not as strong as possible result of [31] . Afterwards we analyze why our result coincides with the bound obtained from 
contraction theory more recently [3, 27]. We also relate it to QUAD-conditions [17] and conclude with a direct approach 
based on Lyapunov’s method [56]. Although [56] was published almost 30 years ago, it still sets the bar of the sharpest 
sufficient condition; it is reached but not outperformed by most of the other works, including the specialization of our 
own result to the static linear case.

The following unitless version of the FitzHugh-Nagumo model is used in [4]: 

 where b, 𝜀, a > 0 and I are constants and u denotes the input. We remark that while our model (11) allows more general 
nonlinearities in x than (10d) as well as a dependence of ẋ on y, it only treats the case a = 0 . The relevant ingredient for 
our criterion is the nonlinearity

in (11). Since the maximum of − d

dz1
fG evaluates to 1 (the slope of fG is extremal at the origin), we have the condition 

𝜆2{�} > 1 . The condition presented in [14] spells out as

where �1 is the bound on x resulting from the fact that the trajectories are ultimately bounded. According to [14] common 
values (of the parameters relevant for the criterion) for biologically plausible firing behavior of the FHN-oscillators are 
� ≈

1

12
 and �1 ≈ 2 which would require the connectivity to fulfill 𝜆2{�} > 2.41 . But even without explicit values we observe 

that our condition is sharper than (37) which is always strictly greater than 1.
The bound 𝜆2{�} > 1 for the above FHN-model (35) is the sharpest available sufficient condition for synchronization and 

has also been obtained in [3, cor. 4.1] with the methods of contraction theory, in [27, thm. 30] as part of the generalization of 
contraction theory to so-called semi-contracting systems, and in [56] by a direct application of Lyapunov’s method.

[31] considers static diffusive coupling of FitzHugh-Nagumo and van-der-Pol oscillators and their result is weaker than 
ours and that of [3, 27, 56] and ours, the reason being that they do not consider the coupling graph as a weighted graph. As 
a consequence, their criterion compares the smallest coupling weight to the quotient of the unweighted graph’s algebraic 
connectivity �2 divided by a quantity that correspond to our ΔG . This provides a weaker result and has some peculiar 
properties: Given a network that meets their criterion, one could always add a new edge with small enough coupling to 
produce a situation in which their criterion is not met. However, the algebraic connectivity of a weighted graph is monotone 
in the sense that adding new edges only increases connectivity. We think that a synchronization criterion that uses the 
algebraic connectivity should reflect this fact.

The general sufficient condition of [3] is spelled out in terms of the log-matrix norm �2,P and it is also obtained for more 
general log-matrix (semi-)norms in [27]. According to [27] (this is the phrasing of [9, thm. 5.19]) the diffusively coupled system

synchronizes if there exist p ∈ [1,∞] , positive definite Q ∈ ℝ
n×n and 𝜀 > 0 such that for every (t, x) ∈ ℝ≥0 ×ℝ

n one has

where L is the Laplacian matrix to the weighted undirected graph with adjacency matrix A and �p,Q denotes the weighted 

log-matrix-norm. The only one needed explicitly in the following is �2,Q(M) = �max

(
Q

M+MT

2
Q−1

)
 . Now by the Demidovic-

(35a)ẋ = −

[
x3

3
− x

]
+ I + u,

(35b)ẏ = 𝜀[x + a − by],

(36)fG(z1) =
1

3
z3
1
− z1

(37)�2{�} ≥ 1 + � +
�2
1

3
,

(38)ẋ𝜇 = f
(
t, x𝜇

)
−
∑
𝜈

a𝜇𝜈
[
x𝜇 − x𝜈

]
, 𝜇 ∈ {1,… ,N}.

(39)�p,Q(Df (t, x)) ≤ �2{L} − �,
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lemma ( [19], cp. [9, lem. 3.1]) the Jacobian Df  satisfies �
2,Q

1
2
(Df (x)) ≤ C for some positive-definite matrix Q if and only if 

f  satisfies the one-sided Lipschitz condition

for all x , y ∈ ℝ
n , where ‖x‖2,Q∶=‖Qx‖2 , so that for symmetric Q one has ‖x − y‖2

2,Q
1

2

=
�
x − y

�T
Q

1

2 Q
1

2

�
x − y

�
=
�
x − y

�T
Q
�
x − y

� . 
One can check that the nonlinear function fG satisfies the one-sided Lipschitz condition

where Kl is as in (22), i.e., such that fm(z1) = fG(z1) + Klz1 is strictly monotonic increasing. Due to the choice of coordinate 
transformation used to describe the unitless model, this translates to the following condition on f :

Therefore, our condition 𝜆2{�} > max{0, K} with K = maxz1∈ℝ

{
−

dfG

dz1
(z1)

}
 implies that (39) is satisfied due to the 

equivalence of one-sided Lipschitz-conditions and bounds on log-matrix-norms established by the 
Demidovic-lemma.

QUAD-conditions, which have been used for instance in [15–18], are a variation of one-sided Lipschitz-conditions:

Definition 7 Let f ∶ ℝ
n
→ ℝ

n be a vector field, let � be a diagonal matrix and 𝜔 > 0 a real number. One says that f  is 
QUAD(�,�) if it satisfies the inequality

There is an intimate connection between QUAD-conditions and contraction theory summarized in [17]. Denote by 
�0 = −� the negative Laplacian to (38), let f  be QUAD(�0,�) for some 𝜔 > 0 and introduce the following matrices:

where PN is the orthogonal projection to the complement of 1N . According to [18, thm. 2]) the network of oscillators 
(38) synchronizes if the matrix [𝚷𝚫+𝚷𝚲] is negative semi-definite. The negative semi-definiteness of the matrix 
[𝚷𝚫+𝚷𝚲] can be characterized by an inequality between the maximal eigenvalue of �0 and the algebraic connectivity 
of � via a standard argument. To our surprise we could not find this in the literature so we record a proof for the reader’s 
convenience.

Proposition 8 The matrix [𝚷𝚫+𝚷𝚲] is negative semi-definite if and only if the largest eigenvalue �max

{
�0

}
 of �0 and the 

algebraic connectivity �2{�} satisfy �max

{
�0

} ≤ �2{�}.

In order to compare our synchronization condition to the one of [18, thm. 2] based on QUAD-conditions we need to 
derive QUAD-estimates for the FHNO in dependence of the parameters. We derive the following estimate in the appendix:

Lemma 9 Consider the FitzHugh-Nagumo oscillator in the form

with a, b, c0, c1, c2 ≥ 0 and constant current injection j. Then f  is QUAD for �,� such that Δ11 − � ≥ b +
|c1−c0|

2
 and 

Δ22 − � ≥ −c2 +
|c1−c0|

2
.

(40)
�
f (x) − f (y)

�T
Q
�
x − y

� ≤ C‖x − y‖2
2,Q

1
2

(41)−
[
fG(x) − fG(y)

][
x − y

] ≤ Kl
[
x − y

]2
,

(42)
�
f (x) − f (y)

�T�
x − y

� ≤ Kl‖x − y‖2
2
.

[x − y]T[f (x) − f (y)] ≤ [x − y]T�[x − y]

− �[x − y]T[x − y].

(43)�∶ = �0 ⊗ �n, �∶=PN ⊗ �n, �∶=�N ⊗ �0,

(44)

[
ẋ

ẏ

]
= f

([
x

y

])
=

[
−ax3 + bx − c0y + j

c1x − c2y

]
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In the case of static diffusive coupling one can now compare the criteria obtained from QUAD-conditions and ours. As 
� can be chosen arbitrarily small one has that f is QUAD(Δ,�) for all Δ such that Δ11 > b +

|c1−c0|
2

 and Δ22 > −c2 +
|c1−c0|

2
 

and as all parameters are nonnegative Δ11 ≥ Δ22 . By the use of Proposition 8 this results in the sufficient condition

Our condition K = maxz1∈ℝ

(
−

dfG(z1)

dz1

)
< 𝜆2(�) spells out in terms of the above parameters as b < 𝜆2{�} since the slope 

of the conductance function is extremal at the origin. Hence, our condition appears to be sharper in this case, because 
it does not depend on the cross terms proportional to c0, c1 that occur in the above inequalities. However, we had also 
seen that a coordinate transformation can ensure c1 = c0 so that the two in fact coincide if the ODE is set up appropriately.

Lastly, we would like to present one of the sufficient synchronization conditions from Wu and Chua [56] dating back 
to 1995. In this work the authors provide a rather general and powerful framework to study synchronization of identical 
oscillators subject to static linear coupling with particular emphasis on allowing different classes of coupling matrices. 
Their results are therefore divided according to those classes of coupling matrices and we only cite the case that applies 
to the system (38):

Assume there exist a positive definite matrix V  , a diagonal matrix T = diag(t1,… , tn) and a continuous, nondecreasing 
function c ∶ ℝ → ℝ satisfying c(0) = 0 and c(s) > 0 for all s ≠ 0 . If [56, eq. 17] holds, i.e., if 

 for all x , y ∈ ℝ
n and t then (38) synchronizes if 𝜆2{L} > ti for all i (This is [56, thm. 7, cor. 3]). One observes that (46) is a 

generalized form of QUAD-condition as it is more flexible due to the matrix V  . Based on the previous example one sees 
that this provides a more powerful criterion than [18, thm. 2] based on QUAD-conditions as one has a more tractable 
method to sharpen the bound by variation of V  . One can check that (11) satisfies (46) for

with t1 ≥ K  . Thus, for t1 = K  one recovers the condition 𝜆2{L} > K  from thm. 3 for the static case which coincided with 
[3, cor. 4.1]. This is again no coincidence, as (46) and the one-sided Lipschitz-condition (40) are similar and at least for 
diagonal matrices lead to equivalent results. To see this, spell out (46) with, for simplicity, diagonal V = Q:

which is a one-sided Lipschitz-condition (40) with C = tmax = maxi{ti}.
Conversely assume that (40) holds for diagonal, positive definite Q and C > 0 , then

for T0 = diag(t1,… , tn) such that ti ≥ C . Hence, (46) holds for all T = T0 + �� with 𝜀 > 0 as −�‖x − y‖2 provides a function 
−c(‖x − y‖) with the required properties. The sharpest choice consists of ti = C so that tmax = C which is the relevant 
part of T  towards the synchronization condition. In conclusion, although (46) and (40) are not fully equivalent due the 
higher flexibility in the matrix T  they lead to the same synchronization condition, because only the maximal eigenvalue 
of T  matters.

(45)b +
||c1 − c0

||
2

> 𝜆2(�).

(46a)
[
x − y

]T
V
[
f (x , t) − f (y, t) − T

[
x − y

]]

(46b)≤ −c(‖x − y‖)

(47)V = � and T = diag(t1, 0)

�
x − y

�T
Q
�
f (x , t) − f (y, t)

�

≤ �
x − y

�T
QT

�
x − y

�
− c(‖x − y‖)

≤ �
x − y

�T
QT

�
x − y

�

≤ max
i
{ti}‖x − y‖2

2,Q
1
2

,

(48)
�
f (x) − f (y)

�T
Q
�
x − y

� ≤ C‖x − y‖2
2,Q

1
2

(49)= C
[
x − y

]T
Q
[
x − y

] ≤ [
x − y

]T
T0Q

[
x − y

]
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It is fascinating that the sharpness of sufficient synchronization conditions for oscillators coupled by static linear 
coupling has not increased over the last 30 years. We wonder, if this is only due to the similarities of the used methods, 
or if there is something deeper to be learned here.

6  Conclusion and outlook

This work is dedicated to the derivation of a sufficient synchronization condition for a network of (identical) diffusively 
coupled FitzHugh-Nagumo oscillators with time-variant, state-dependent and locally adaptive coupling, which among 
others includes coupling by memristors and/or nonlinear conductances. We started by briefly reviewing the neces-
sary theory of dissipative and semi-passive systems and provided a description of uncoupled and diffusively coupled 
FitzHugh-Nagumo-type oscillators by ordinary differential equations fitting in this framework. Then, we provided a Lya-
punov function candidate V and derived conditions on the oscillators’ nonlinear conductance relative to the connectivity 
of the network for V̇  to be decreasing along the solutions of the system. Our condition on the nonlinear conductance 
function iG is that it admits a modification by a linear term im(u) = iG(u) + ΔG u such that im is strictly monotonically 
increasing. We then showed that the oscillators synchronize globally, i.e., from any initial state, if the connectivity �2{W} 
of the network exceeds the slope ΔG of this modification for all times. To examine the validity and sharpness of this con-
dition, we conducted a few numerical experiments. Finally, we showed that our synchronization condition specialized 
to linear static coupling is as sharp as those from the literature [3, 27, 56] but also easy to use for practitioners who need 
these conditions to be given in terms of parameters of the ideal circuit. Towards application to real-world systems it is an 
open question to which extent our result applies to noisy systems. One would expect that small magnitudes of noise do 
not affect the system’s behavior but a quantitative answer requires a different kind of analysis. Towards this one would 
have to replace the deterministic ODEs by stochastic ones and study the system as a stochastic process.

In future research, we would like to sharpen our synchronization condition and to loosen the condition on �2{W} for 
state-dependent and adaptive coupling. In the current form the condition does not take into account that only a minor 
part of phase space is reached by a trajectory but the criterion considers the minimum of �2{W} over all times and phase 
space. We would therefore like to spell out this conditions with respect to the initial values in the sense that we want to 
study how the minimum over a given trajectory evaluates and depends on the initial value. We also plan to investigate 
if our approach can be adapted to the case of heterogeneous oscillators and clustered synchronization.
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Appendix

Interconnected semi‑passive systems

Definition 10 (Cr-dissipativity, cp. [47, def. 5]) The system (1) is called Cr-dissipative (in the sense of Willems [55]), with 
so-called supply rate w ∶ ℝ

n ×ℝ
k
↦ ℝ , if it is r times continuously differentiable, denoted as w ∈ Cr

(
ℝ

n ×ℝ
k ,ℝ

)
 , and 

there exists a so-called storage function S ∈ Cr
(
ℝ

n,ℝ≥0
)
 such that,

for all4 x ∈ C0
(
ℝ,ℝk

)
∩ L∞

(
ℝ,ℝk

)
 , z0 ∈ ℝ

n and t0 ≤ t < te , where te is the upper time limit for a solution z of (1) to exist 
given the input x and initial conditions z0.

Typically, the storage function is given by the system’s total energy whose change over time is bounded by the power 
supplied to the system. Passive and semi-passive systems are Cr-dissipative systems with respect to a specific supply rate.

Definition 11 (Passivity, cp. [47, def. 8]) The system (1) is called passive, if it is Cr-dissipative with supply rate 
w(z, x) = xTy = xTh(z) and its storage function S satisfies S(�) = 0.

Definition 12 (Semi-passivity, cp. [47, def. 9]) The system (1) is called semi-passive if it is Cr-dissipative with supply rate

for some function H ∶ ℝ
n
↦ ℝ that satisfies:

There exists 𝜌0 > 0 and a function � ∶ ℝ ⧵
(
−�0, �0

)
↦ ℝ≥0 such that for all z ∈ ℝ

n with ‖z‖ ≥ �0 one has H(z) ≥ �(‖z‖) . 
If the function � can be chosen to be positive then the system is called strictly semi-passive.

Note that the crucial part in the definition of (strict) semi-passivity is that H is nonnegative (positive) outside the �0-ball 
around 0 but that it is allowed to be negative inside. In the sense of the above definition, a physical system is passive if 
its change in energy w.r.t. time is less than or equal to the power injected, as the scalar product of input x and output y 
usually have the unit of power. In principle, this applies to all physical systems, but in input-output-modeling it is often 
convenient to not count the power supply of active components as input. A semi-passive system is then roughly a system 
whose active components have a finite power supply, so that they can inject power into the system for a limited range 
of operating points (above: inside the �0-ball for some 𝜌0 > 0 ) but dissipative behavior dominates elsewhere.

By the first part of [47, lem. 1], one has that the interconnection of semi-passive systems by a diffusive coupling 
mechanism without additional inputs results in a system whose trajectories are bounded. Unfortunately, [47, lem. 1] only 
applies to systems of type (2) for static coupling. Proposition 13 below is a generalization of [47, lem. 1] that also applies 
to more general diffusive couplings as in (2). We provide a proof in the subsequent sections.

Proposition 13 Assume: 

1. The systems (2a) are semi-passive for � = 1,… ,N with radially unbounded5 storage functions and such that the function 
�� bounding H� from below (see the dissipation inequality in def. 12) is a strictly monotonically increasing and unbounded 
function.

2. The coupling weights a��(t, z, c��) are nonnegative for all (t, z, c).
3. The vector fields k�� are such that solutions to (2d) exist for all times regardless of y.

S(z(t)) − S
(
z0
) ≤ �

t

t0

w(z(�), x(�))d� ,

(50)w(z, x) = xTy − H(z),

4 The set of 0 times continuously differentiable functions C0 denotes just the set of continuous functions, whereas L∞ denotes the set of 
bounded functions.
5 We call a function S ∶ ℝ

n
↦ ℝ radially unbounded if S(z) → ∞ whenever ‖z‖ → ∞.
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Then solutions to (2) exist for all times t ≥ t0 and are such that z(t) is bounded.

A preparatory lemma to prop. 13

In order to prove prop. 13 one needs the following lemma:

Lemma 14 Consider N strictly semi-passive systems of dimensions n1,… , nN with storage functions S� and functions H� and �� 
as in def. 12. If the �� ∶ ℝ → ℝ≥0 are unbounded from above and strictly monotonically increasing there exists a nonnegative 
function � ∶ ℝ

ntot → ℝ≥0 and a constant r > 0 such that 

Proof We cannot assume for ‖z‖ arbitrarily large that this also holds for all ‖z�‖ . Thus, we cannot use all individual bounds 
simultaneously but need to consider the worst case, i.e., only one ‖z�‖ is large enough for H� to be bounded from below 
by �� . Set h� = infz� H�(z�) then

holds for all � and all z . Without loss of generality assume that h� ≤ 0 as this only provides an even lower bound on H(z) . 
Let 𝜀𝜈 > 0 and choose r̃𝜈 > 0 such that

This is possible because all �� are strictly monotonically increasing and unbounded. We furthermore are free to choose 
r̃𝜈 ≥ r𝜈 , where r𝜈 > 0 is the constant fulfilling

For � = 1,… ,N set

and observe that �̃�𝜈 is positive and monotonically increasing. One then has for ‖‖z𝜈‖‖ > r̃𝜈 that

and therefore

such that ‖‖z𝜈‖‖ > r̃𝜈 . Now set

(51a)H(z) ≥ �(z) ∀ ‖z‖ ≥ r, where

(51b)ntot =

N∑
�=1

n� , H(z) =

N∑
�=1

H�(z�).

(52)H(z) =

N∑
�=1

H�(z�) ≥ H�(z�) +

N∑
�≠�

h�

𝜌𝜈(r̃𝜈) = 𝜀𝜈 +

N∑
𝜇≠𝜈

h𝜇 and

𝜌𝜈(x) ≥ 𝜀𝜈 +

N∑
𝜇≠𝜈

h𝜇 , ∀x ≥ r̃𝜈 .

H𝜈

�
z𝜈
� ≥ 𝜌𝜈(‖z𝜈‖), ∀‖z𝜈‖ > r𝜈 .

(53)�̃�𝜈(x) =

�
𝜌𝜈(x) −

∑
𝜇≠𝜈 h𝜇 , for x > r̃𝜈

𝜀𝜈 , for x ≤ r̃𝜈

(54)H𝜈

(
z𝜈
) ≥ 𝜌𝜈

(‖‖z𝜈‖‖
)
= �̃�𝜈

(‖‖z𝜈‖‖
)
−
∑
𝜇≠𝜈

h𝜇

H𝜈(z) ≥ H𝜈

(
z𝜈
)
+
∑
𝜇≠𝜈

h𝜇 ≥ �̃�𝜈
(‖‖z𝜈‖‖

)
, ∀ z ∈ ℝ

ntot ,
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which implies �̃�(z) ≤ �̃�𝜈
(‖‖z𝜈‖‖

)
 by definition.

Now for ‖z‖ > r̃ there exists � such that ‖‖z𝜈‖‖ > r̃𝜈 and hence

for all ‖z‖ > r̃ . This shows the lemma with 𝜌 = �̃� and r = r̃ .   ◻

Proof of Proposition 13

We don’t assume the systems to be identical or have equal dimension, therefore define ntot =
∑N

�=1
n� , where n� is the 

state space dimension of the �-th subsystem. Each individual subsystem has a storage function S� to which there exists 
a function H� as in def. 12 such that along the trajectories z�(t) one has

By assumption L ≥ � , so that for

one has

along the solutions of (2), which holds for all (t, z, c) . This implies the integral inequality:

We want to use the above inequality to show that z(t) is bounded for all t and in order to do so we need to turn bounds 
for H� by �� into a bound for H by a single nonnegative function � outside some ball Br(0) ⊂ ℝ

ntot . Now as all storage 
functions S� are radially unbounded, the same is true for S and therefore to C > 0 there exists R > 0 such that

where BR(0) denotes the ball of radius R in ℝntot centered at 0. We may assume that R ≥ r > 0 with r as in lemma 14. We 
wish to ignore what happens inside BR(0) by setting 

�̃�(z) = min
𝜈

�̃�𝜈
(‖‖z𝜈‖‖

)
and r̃ =

√√√√ N∑
𝜇=1

r̃2
𝜇

(55)H(z) ≥ H𝜈

(
z𝜈
)
+
∑
𝜇≠𝜈

h𝜇 ≥ �̃�𝜈
(‖‖z𝜈‖‖

) ≥ �̃�(z)

Ṡ𝜇(z𝜇) ≤ xT
𝜇
y𝜇 − H𝜇(z𝜇).

S(z) =

N∑
�=1

S�(z�) and H(z) =

N∑
�=1

H�(z�)

Ṡ ≤
N∑

𝜇=1

xT
𝜇
y𝜇 − H𝜇(z𝜇)

= −yTL(t, z, c)y − H(z)

≤ −H(z),

(56)S(z(t)) − S
(
z(t0)

) ≤ −�
t

t0

H(z(�))d� .

(57)
{
z ∈ ℝ

ntot | S(z) ≤ C
}
⊂ BR(0),

(58a)S̃(z)∶=

�
0 if ‖z‖ ≤ R

S(z) otherwise.
,

(58b)�̃�(z)∶=

�
0 if ‖z‖ ≤ R

𝜌(z) otherwise.
.
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 Then S̃ is also radially unbounded since it is equal to S outside a compact region. Furthermore, from inequality (56) one 
deduces

along the solutions of (2). For trajectories outside the ball BR(0) this follows directly from (56) and for trajectories inside 
the ball this is trivially satisfied. For trajectories that cross the ball’s boundary exactly once at time t1 one can split the 
integral as

to obtain

This shows that (59) holds for any trajectory of (2) as one can subdivide the integrals in the above manner for more than 
one crossing time as well. Now as �̃� is nonnegative this shows

and together with S̃ being radially unbounded this shows that z(t) is bounded for all t which concludes the proof.

Proof of Lemma 2

Take the system’s energy as storage function:

Now, compute its derivative w.r.t. �:

where �z denotes the gradient of a function w.r.t. the vector z . Since y = [z1] , we see that we have obtained an equation 
similar to the supply rate of a semi-passive system (50). Thus, define

and observe 

 We conclude that H is radially unbounded and positive outside some ball around the origin and hence, the FHNO (11) 
is strictly semi-passive as there must exist a function � as in def. 12. In more detail, (61b) implies that there exist r0, c0 > 0 
such that

A similar estimate holds for the residual term, �z2
2
 . Hence, there exist r1, c1 > 0 such that

(59)S̃(z(t)) − S̃
(
z(t0)

) ≤ −�
t

t0

�̃�(z(𝜏))d𝜏

∫
t

t0

�̃�(z(𝜏))d𝜏 = ∫
t1

t0

�̃�(z(s))d𝜏 + ∫
t

t1

�̃�(z(𝜏))d𝜏 ,

S̃(z(t)) − S̃
(
z(t0)

) ≤ �
t1

0

�̃�(z(𝜏))d𝜏 + �
t

t1

�̃�(z(𝜏))d𝜏 .

S̃(z(t)) ≤ S̃
(
z(t0)

)
, ∀ t ≥ t0,

(60)S(z) =
1

2
zTz.

S�(z) = [∇zS(z)]
Tz�

= −�z2
2
− z1

[
fG
(
z1
)
− �

]
+ z1 x,

H(z) = �z2
2
+ z1

[
fG
(
z1
)
− �

]

(61a)lim‖z‖→∞
H(z) = ∞, since

(61b)lim
z1→±∞

z1
[
fG
(
z1
)
− �

]
= ∞.

z1
[
fG
(
z1
)
− �

] ≥ c0|z1|, ∀ |z1| ≥ r0.
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Since all norms on ℝn are equivalent, there exist c2, r2 > 0 such that

Proof of Lemma 4

First, P is a positive semi-definite matrix and its defect is equal to 1. Since M is similar to a block diagonal matrix whose two 
blocks are positive multiples of P , the matrix M is positive semi-definite with defect 2. Thus, V (z) ≥ 0 with equality only when 
�1 = z̄11 and �2 = z̄21 with z̄1, z̄2 ∈ ℝ independent of each other. Denote

A substitution of z′ by (17), considering that � = �1 is in the kernel of P , that P is symmetric, and that � = �1 , provides the 
derivative of V (z) w.r.t. � along a solution z to (17):

As a preparatory step, we use P2 = P as well as its symmetry to compute

Since fm is strictly monotonically increasing, each term in the sum is always nonnegative. We obtain

This implies that V �(z) has the upper bound

Hence, for V �(z) ≤ 0 we require F to be positive semi-definite. The positive semi-definiteness of the lower right block of 
F is ensured, since 𝛽 > 0 and P ≥ 0 . We therefore find

Now, since � is a Laplacian matrix of a connected graph its kernel is one-dimensional and spanned by 1N [8]. Therefore, 
we conclude that � and P have a common eigenbasis (and hence commute) as P acts like the identity on 1⟂

N
 and also 

sends 1N to 0. Thus, the upper left block can be analyzed by the eigenvalues of � , where we recall the chosen order (6) 
of the eigenvalues, and we find

Proof of Lemma 5

With Kl = K + � one has that fm ∶ ℝ → ℝ defined as

H(z) ≥ c1
[|z1| + |z2|

]
, for all |z1| + |z2| ≥ r1.

H(z) ≥ c2‖z‖, ∀ ‖z‖ ≥ r2.

(62)fm ∶ ℝ
N
→ ℝ

N , �1 ↦
[
fm(z�,1)

]N
�=1

.

(63)

V �(z) =
[
∇zV (z)

]T
z� = �T

1
P� �

1
+ �T

2
P� �

2

= �T
1
P
[
−fG

(
�1
)
− �2 + � − ��1

]

+ �T
2
P
[
�1 − ��2

]

= −�T
1
PfG

(
�1
)
− �T

1
P��1 − ��T

2
P�2.

�T
1
Pfm

(
�1
)
=
[
P�1

]T
Pfm

(
�1
)

=
2

N2

∑
𝜇<𝜈

[
z𝜇,1 − z𝜈,1

][
fm(z𝜇,1) − fm(z𝜈,1)

]
.

�T
1
PfG

(
�1
)
= �T

1
Pfm

(
�1
)
− Kl�

T
1
P�1

≥ −Kl�
T
1
P�1.

V �(z) ≤ −zT�TF�z, F =

[
P� − KlP �

� �P

]
.

(64)F ≥ � ⇔ P�(� , z, c) − KlP ≥ 0.

[�(� , z, c) − Kl�N]P ≥ � ⇔ �2{�(� , z, c)} ≥ Kl.
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is strictly monotonically increasing because its derivative w.r.t. z1 is strictly positive. Lemma 2 ensures that (11) is strictly 
semi-passive with unbounded storage function. By construction, fm and fG satisfy (22) so that fG satisfies the conditions 
of lemma 4.

Barbalat’s lemma and derivatives

Lemma 15 (Barbalat’s lemma [7]) Let f ∶ ℝ → ℝ be a uniformly continuous function such that

exists and is finite, then

In our setting it is more convenient to use a cousin of Barbalat’s lemma due to [52] (see also [51] for a nice collection of 
different versions of Barbalat’s lemma and where to find them).

Lemma 16 (Cp. [52]) Let f ∶ ℝ → ℝ be uniformly continuous and square-integrable, i.e., such that

Then one has

If f is differentiable, one may replace "f uniformly continuous" by " ḟ  being bounded".

Proof of Proposition 8

As �0 is diagonal and �0 = −� is symmetric both possess a basis of eigenvectors 
{
v1,… , vN

}
 , 
{
e1,… , en

}
 respectively, 

where the ei are the unit vectors of ℝn . Since � = �0 ⊗ �n and � = �N ⊗ �0 commute a joint basis of eigenvectors of � 
and � is given by 

{
v𝜇 ⊗ ej ,𝜇 = 1,… ,N, j = 1,… , n

}
. One has

for all � = 1,… ,N and j = 1,… , n . Furthermore, as � is a Laplacian matrix, the eigenvectors to the eigenvalues 
�2{�},… , �N{�} are orthogonal to the kernel of PN and therefore PNv� = v� for all � ≥ 2 , which leads to

Thus, [�� +��] is negative semi-definite if and only if Δ0,jj − ��{�} ≤ 0 for all � ≥ 2 and all j = 1,… , n . Since �2{�} is 
the smallest eigenvalue apart from �1{�} this is equivalent to

fm(z1) = fG(z1) + Klz1 ∀ z1 ∈ ℝ

lim
t→∞∫

t

0

f (�)d�

lim
t→∞

f (t) = 0.

∫
+∞

−∞

f 2(t)dt < ∞.

lim
t→∞

f (t) = 0.

(65)[� + �]
[
v𝜇 ⊗ ej

]
=
[
Δ0,jj − 𝜆𝜇{�}

][
v𝜇 ⊗ ej

]

[�� +��]
[
v𝜇 ⊗ ej

]
={ [

Δ0,jj − 𝜆𝜇{�}
]
v𝜇 ⊗ ej ∀𝜇 ≥ 2

0 for i = 1.

(66)�max

{
�0

} ≤ �2{�}.
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Proof of the QUAD‑estimate in lemma 9

One computes

where at (i) it is used that 2ab ≤ a2 + b2 and at (ii) that 
[
x1 − x2

][
x3
1
− x3

2

] ≥ 0 for all x1, x2 ∈ ℝ . This shows that f  is 
QUAD(�,�) for all �,� such that
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